Respuesta :

Answer:

[tex]m\angle BOC=30^o[/tex]

Step-by-step explanation:

step 1

Find the measure of angle COD

we know that

[tex]m\angle COF=m\angle COD+m\angle DOF[/tex] ---> by addition angle postulate

we have

[tex]m\angle COF=150^o[/tex] ----> given problem

[tex]m\angle DOF=90^o[/tex] ----> because AD is perpendicular to BF

substitute the given values

[tex]150^o=m\angle COD+90^o[/tex]

[tex]m\angle COD=150^o-90^o[/tex]

[tex]m\angle COD=60^o[/tex]

step 2

Find the measure of angle BOC

we know that

[tex]m\angle BOC+m\angle COD=90^o[/tex] ---> by complementary angles

we have

[tex]m\angle COD=60^o[/tex]

substitute

[tex]m\angle BOC+60^o=90^o[/tex]

[tex]m\angle BOC=90^o-60^o[/tex]

[tex]m\angle BOC=30^o[/tex]

short answer: 30 degrees :)

Q&A Education