Respuesta :
Answer:
4.5
Step-by-step explanation:
To find the instantaneous rate of chance, take the derivative:
[tex]f(x) = {x}^{2} - \frac{2}{x} - 1 \\ \frac{d}{dx} f(x) = 2x + \frac{2}{ {x}^{2} } [/tex]
Remember to use power rule:
[tex] \frac{d}{dx} {x}^{a} = a {x}^{a - 1} [/tex]
To differentiate -2/x, think of it as:
[tex] - 2 {x}^{ - 1} [/tex]
Then, substitute 2 for x:
[tex]2(2) + \frac{2}{ {2}^{2} } \\ 4 + \frac{2}{4} = 4.5[/tex]
Answer:
2
Step-by-step explanation:
Assuming the function is:
f(x) = (x² − 2) / (x − 1)
Use quotient rule to find the derivative.
f'(x) = [ (x − 1) (2x) − (x² − 2) (1) ] / (x − 1)²
f'(x) = (2x² − 2x − x² + 2) / (x − 1)²
f'(x) = (x² − 2x + 2) / (x − 1)²
Evaluate at x=2.
f'(2) = (2² − 2(2) + 2) / (2 − 1)²
f'(2) = (4 − 4 + 2) / 1
f'(2) = 2