Answer:
Therefore,
[tex]y=\dfrac{5}{6}[/tex]
Step-by-step explanation:
Given:
[tex]2+\dfrac{5}{6}\sqrt{6}=2+\sqrt{6}y[/tex]
To Find:
x = ?
Solution:
[tex]2+\dfrac{5}{6}\sqrt{6}=2+\sqrt{6}y[/tex]
Subtract 2 from both the side.
[tex]2-2+\dfrac{5}{6}\sqrt{6}=2-2+\sqrt{6}y[/tex]
Then we have
[tex]\dfrac{5}{6}\sqrt{6}=\sqrt{6}y[/tex]
Divide [tex]\sqrt{6} [/tex]on both the side
[tex]\dfrac{5}{6}\dfrac{\sqrt{6}}{\sqrt{6}}=\dfrac{\sqrt{6}}{\sqrt{6}}=y[/tex]
Then we have
[tex]\dfrac{5}{6}=y[/tex]
Therefore,
[tex]y=\dfrac{5}{6}[/tex]