The first three terms of a sequence are given. Round to the nearest thousandth (if necessary).
100
,
80
,
64
,
.
.
.
100,80,64,...
Find the 9th term.
Find the

Respuesta :

Answer:

The 9th term for given sequence is 16.777

Therefore the 9th term is [tex]a_{9}=16.777[/tex].

Step-by-step explanation:

Given first three terms of a sequence are 100,80,64,...

Given [tex]a_{1}=100[/tex] ,[tex]a_{2}=80[/tex] , [tex]a_{3}=64[/tex],...

Given sequence is of the form of Geometric sequence

Therefore it can be written as [tex]{\{a,ar,ar^2,...}\}[/tex]

therefore a=100 , ar=80 , [tex]ar^2=64[/tex] ,...

To find common ratio

[tex]r=\frac{a_{2}}{a_{1}}[/tex]

[tex]r=\frac{80}{100}[/tex]

[tex]r=\frac{4}{5}[/tex]

[tex]r=\frac{a_{3}}{a_{2}}[/tex]

[tex]r=\frac{64}{80}[/tex]

[tex]r=\frac{4}{5}[/tex]

Therefore [tex]r=\frac{4}{5}[/tex]

The nth term of the geometric sequence is

[tex]a_{n}=ar^{n-1}[/tex]

To find the 9th tem for the given geometric sequence is

[tex]a_{n}=ar^{n-1}[/tex]

put n=9, a=100 and  [tex]r=\frac{4}{5}[/tex]

[tex]a_{9}=100(\frac{4}{5})^{9-1}[/tex]

[tex]=100(\frac{4}{5})^{8}[/tex]

[tex]=100(\frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5}\times \frac{4}{5})[/tex]

[tex]=100(\frac{256\times 256}{625\times 625})[/tex]

[tex]=100(\frac{65536}{390625})[/tex]

[tex]=100(0.16777})[/tex]

[tex]=16.777[/tex]

Therefore [tex]a_{9}=16.777[/tex]

The 9th term is 16.777

Q&A Education