Respuesta :

frika

Answer:

[tex](n+2)^2+6[/tex]

Step-by-step explanation:

Pattern 1 consists of

[tex]3+3\times 3+3[/tex] small squares (here n = 1 and [tex]3\times 3=(1+2)\times (1+2)[/tex]).

Pattern 2 consists of

[tex]3+4\times 4+3[/tex] small squares (here n = 2 and [tex]4\times 4=(2+2)\times (2+2)[/tex]).

Pattern 3 consists of

[tex]3+5\times 5+3[/tex] small squares (here n = 3 and [tex]5\times 5=(3+2)\times (3+2)[/tex]).

Thus, pattern n consists of

[tex]3+(n+2)\times (n+2)+3=6+(n+2)^2[/tex] small squares.

Otras preguntas

Q&A Education