Answer:
[tex]u(t)=\frac{1}{5} sin\ (25t)[/tex]
Explanation:
Given:
According to given:
[tex]m.g=k.\Delta x[/tex]
[tex]150\times 980=k\times 1.568[/tex]
[tex]k=93750\ dyne.cm^{-1}[/tex]
we know frequency:
[tex]\omega=\sqrt{\frac{k}{m} }[/tex]
[tex]\omega=\sqrt{\frac{93750}{150} }[/tex]
[tex]\omega=25[/tex]
Now, for position of mass in oscillation:
[tex]u= A.sin\ (\omega.t)+B.cos\ (\omega.t)[/tex]
[tex]u= A.sin\ (25.t)+B.cos\ (25.t)[/tex]
at [tex]t=0;\ u(0)=0\ \Rightarrow A=0[/tex]
∴[tex]u(t)=B.sin\ (25.t)[/tex]
∵ at [tex]t=0;\ u'(0)=20\ cm.s^{-1}\ \Rightarrow B=\frac{1}{5}[/tex]
[tex]u(t)=\frac{1}{5} sin\ (25t)[/tex]