Please assist me with these math problems asap. Round answers to the nearest tenth
Answer:
8) [tex]\displaystyle 9,4 ≈ hypotenuse \\ 4,9 ≈ leg[/tex]
6) [tex]\displaystyle 5,2 ≈ horizontal\:leg \\ 4,7 ≈ reflexive, vertical\:leg[/tex]
5) [tex]\displaystyle 3,2 ≈ reflexive, vertical\:leg[/tex]
Step-by-step explanation:
Obviously, use the Pythagorean Theorem for all of them:
8) [tex]\displaystyle -5^2 + 7^2 = c^2 → -25 + 49 = c^2 → \sqrt{24} = \sqrt{c^2} → 2\sqrt{6} = c → 4,898979486 ≈ 4,9 ≈ c \\ \\ 5^2 + 8^2 = c^2 → 25 + 64 = c^2 → \sqrt{89} = c^2 → 9,433981132 ≈ c[/tex]
6) [tex]\displaystyle -5,2^2 + 7^2 = c^2 → -27,04 + 49 = c^2 → \sqrt{21,96} = \sqrt{c^2} → \frac{3\sqrt{61}}{5} = c → 4,686149806 ≈ 4,7 ≈ c[/tex]
5) [tex]\displaystyle -3,8^2 + 5^2 = c^2 → -11,44 + 25 = c^2 → \sqrt{10,56} = \sqrt{c^2} → \frac{2\sqrt{66}}{5} = c → 3,249615362 ≈ 3,2[/tex]
Split the isosceles base in half to get two identical legs of 3,8.
I am joyous to assist you anytime.