At t = 0, a battery is connected to a series arrangement of a resistor and an inductor. At what multiple of the inductive time constant will the energy stored in the inductor's magnetic field be 0.565 its steady-state value?

Respuesta :

Answer:

0.2854

Explanation:

The Energy stored in coil is given by

U=[tex]\frac{1}{2}[/tex]L[tex]I^{2}[/tex]

U=0.565Uo

[tex](\frac{1}{2} )L(i^{2} )=(0.565)(\frac{1}{2} )L(io^{2} )[/tex]

[tex](i^{2} )=(0.565)(io^{2} )[/tex]

[tex](ioe^{-t/T}  )^{2}=(0.565) (io)^{2}[/tex]

[tex](io)^{2}e^{-2t/T}=(0.565)(io)^{2}[/tex]

[tex]e^{-2t/T}=0.565[/tex]

Apply log: both sides we get

[tex]\frac{-2t}{T}=-0.5709[/tex]

[tex]\frac{t}{T}=0.2854[/tex]

Q&A Education