A uniform thin rod of length 0.928 0.928 m is hung from a horizontal nail passing through a small hole in the rod located 0.043 0.043 m from the rod's end. When the rod is set swinging about the nail at small amplitude, what is the period of oscillation?

Respuesta :

Answer:

T = 1.54 s

Explanation:

given,

length of rod = 0.928 m

[tex]T = 2\pi \sqrt{\dfrac{I}{MgD}}[/tex]

D is distance from pivot to CM

[tex]D = \dfrac{L}{2}-0.043[/tex]

[tex]D = \dfrac{0.928}{2}-0.043[/tex]

D = 0.421 m

[tex]T = 2\pi \sqrt{\dfrac{I}{MgD}}[/tex]

[tex]T = 2\pi \sqrt{\dfrac{\dfrac{1}{12}ML^2+Mx^2}{MgD}}[/tex]

[tex]T = 2\pi \sqrt{\dfrac{\dfrac{1}{12}L^2+x^2}{gD}}[/tex]

[tex]T = 2\pi \sqrt{\dfrac{\dfrac{1}{12}\times 0.928^2+0.421^2}{9.8 \times 0.421}}[/tex]

T = 1.54 s

The period of oscillation will be "1.54 s".

Period of oscillation:

According to the question,

Length of rod = 0.928 m

The distance from pivot to CM will be:

→ [tex]D = \frac{L}{2}-0.043[/tex]

       [tex]= \frac{0.928}{2} - 0.043[/tex]

       [tex]= 0.421 \ m[/tex]

hence,

The period of oscillation be:

→ [tex]T = 2 \pi \sqrt{\frac{I}{MgD} }[/tex]

      [tex]= 2 \pi \sqrt{\frac{\frac{1}{2}ML^2+Mx^2}{MgD} }[/tex]

      [tex]= 2 \pi \sqrt{\frac{\frac{1}{12}\times 0.928^2+0.421^2 }{9.8\times 0.421} }[/tex]

      [tex]= 1.54 \ s[/tex]

Thus the above answer is correct.

Find out more information about amplitude here:

https://brainly.com/question/26449711

Q&A Education