Respuesta :

Answer:

The inverse of f(x) is g(y)=[tex]\frac{(y-8)^{2}}{4}+4[/tex]

Step-by-step explanation:

Given function is given by f(x)=[tex]2\sqrt{x-4} +8[/tex]

Let, y=f(x)=[tex]2\sqrt{x-4} +8[/tex]

and g(y)=x is inverse of f(x)

Now,

f(x)=[tex]2\sqrt{x-4}+8[/tex]

y=[tex]2\sqrt{x-4}+8[/tex]

y-8=[tex]2\sqrt{x-4}[/tex]

[tex]\frac{y-8}{2}=\sqrt{x-4}[/tex]

[tex]\frac{(y-8)^{2}}{4}=(x-4)[/tex]

[tex]\frac{(y-8)^{2}}{4}+4=x[/tex]

[tex]\frac{(y-8)^{2}}{4}+4=x[/tex]

g(y)=x=[tex]\frac{(y-8)^{2}}{4}+4[/tex]

Thus, the inverse of f(x) is g(y)=[tex]\frac{(y-8)^{2}}{4}+4[/tex]

Q&A Education