the function y= x/tanx is ( an even, an odd, neither an even or odd) function, the function y= secx/x is (an even, an odd, neither an even or odd) function? I have to select one of the answers in parentheses.

Respuesta :

Answer:

If [tex]v(x)=\frac{x}{\tan(x)}[/tex], then [tex]v[/tex] is even.

If [tex]w(x)=\frac{\sec(x)}{x}[/tex], then [tex]w[/tex] is odd.

Step-by-step explanation:

Summary of rules/ what we need:

[tex]f(-x)=f(x)[/tex] implies [tex]f[/tex] is even.

[tex]f(-x)=-f(x)[/tex] implies [tex]f[/tex] is odd.

So in either case, we need to replace [tex]x[/tex] with [tex]-x[/tex].

Let's begin.

First Problem:

[tex]v(x)=\frac{x}{\tan(x)}[/tex]

Replace [tex]x[/tex] with [tex]-x[/tex]:

[tex]v(-x)=\frac{-x}{\tan(-x)}[/tex]

[tex]v(-x)=\frac{-x}{-\tan(x)}[/tex] (We used [tex]\tan(x)[/tex] is odd; that is, [tex]\tan(-x)=-\tan(x)[/tex])

[tex]v(-x)=\frac{x}{\tan(x)}[/tex]

[tex]v(-x)=v(x)[/tex]

This implies [tex]v[/tex] is an even function.

Second Problem:

[tex]w(x)=\frac{\sec(x)}{x}[/tex]

Replace [tex]x[/tex] with [tex]-x[/tex]:

[tex]w(-x)=\frac{\sec(-x)}{-x}[/tex]

[tex]w(-x)=\frac{\sec(x)}{-x}[/tex] (We used [tex]\sec(x)[/tex] is even; that is, [tex]\sec(-x)=\sec(x)[/tex])

[tex]w(-x)=-\frac{\sec(x)}{x}[/tex]

[tex]w(-x)=-w(x)[/tex]

This implies [tex]w[/tex] is an odd function.

Answer:

y = x/tanx is neither odd nor even

y=secx/x is an odd function

Step-by-step explanation:

these are the answers for PLATO

Q&A Education