Answer: The entropy change of the liquid water is 63.4 J/K
Explanation:
To calculate the entropy change for same phase at different temperature, we use the equation:
[tex]\Delta S=n\times C_{p}\times \ln (\frac{T_2}{T_1})[/tex]
where,
[tex]\Delta S[/tex] = Entropy change
[tex]C_{p}[/tex] = molar heat capacity of liquid water = 75.38 J/mol.K
n = number of moles of liquid water = 3 moles
[tex]T_2[/tex] = final temperature = [tex]95^oC=[95+273]K=368K[/tex]
[tex]T_1[/tex] = initial temperature = [tex]5^oC=[5+273]K=278K[/tex]
Putting values in above equation, we get:
[tex]\Delta S=3mol\times 75.38J/mol.K\times \ln (\frac{368}{278})\\\\\Delta S=63.4J/K[/tex]
Hence, the entropy change of the liquid water is 63.4 J/K