A bowling ball (r=22cm) with center of mass G and is projected down the lane that has a friction coefficient of 0.2. The ball's center has an initial horizontal velocity 11 m/s and backspin w. What angular velocity should be given to the 5-kg ball so that it stops spinning and translating at the same instant?

Respuesta :

Answer:124.95 rad/s

Explanation:

Given

radius of ball [tex] r=22 cm[/tex]

coefficient of friction [tex]\mu =0.2[/tex]

ball center has a velocity of [tex]v=11 m/s[/tex]

back spin angular velocity is [tex]\omega _0[/tex]

mass of ball [tex]m=5 kg[/tex]

as there is no motion  in Y direction therefore net Force is zero

[tex]\sum F_y=0[/tex]

[tex]W-N=0[/tex]

[tex]W=N[/tex]

Friction will provide the torque

[tex]f_r=\mu N[/tex]

motion is in x direction therefore

[tex]f_r=ma[/tex]

[tex]\mu N=\mu N=ma[/tex]

[tex]a=\frac{0.2\times 5\times 9.8}{5}[/tex]

[tex]a=1.96 m/s^2[/tex]

time taken to stop its linear velocity

[tex]v=u+at [/tex]

[tex]0=11-1.96\times t[/tex]

[tex]t=\frac{11}{1.96}=5.61 s[/tex]

torque [tex]f_r\cdot r=I\alpha [/tex]

[tex]I=\frac{2}{5}mr^2[/tex]

[tex]f_r\cdot r=\frac{2}{5}mr^2\cdot \alpha [/tex]  

[tex]\alpha =22.27 rad/s^2[/tex]

using

[tex]\omega =\omega _0+\alpha t[/tex]

[tex]0=\omega -22.27\times 5.61[/tex]

[tex]\omega _0=124.95 rad/s[/tex]              

Q&A Education