Respuesta :
Answer:
3.60342 seconds
Explanation:
v = Initial velocity of snowball = 25 m/s
g = Acceleration due to gravity = 9.81 m/s²
[tex]\theta_1[/tex] = First angle = 75°
The second angle will be
[tex]\theta_2=90-\theta_1=90-75=15^{\circ}[/tex]
Horizontal speed for first throw
[tex]v_{x1}=vcos\theta_1\\\Rightarrow v_{x1}=25\times cos75\\\Rightarrow v_{x1}=6.47047\ m/s[/tex]
Horizontal speed for second throw
[tex]v_{x2}=vcos\theta_1\\\Rightarrow v_{x2}=25\times cos15\\\Rightarrow v_{x2}=24.14814\ m/s[/tex]
Horizontal range is given by
[tex]R=\frac{v^2sin(2\theta)}{g}\\\Rightarrow R=\frac{25^2\times sin(2\times 75)}{9.81}\\\Rightarrow R=31.85\ m[/tex]
Time period for first throw
[tex]t_1=\frac{R}{v_{x1}}\\\Rightarrow t_1=\frac{31.85}{6.47047}\\\Rightarrow t_1=4.92236\ s[/tex]
Time period for second throw
[tex]t_2=\frac{R}{v_{x1}}\\\Rightarrow t_2=\frac{31.85}{24.14814}\\\Rightarrow t_2=1.31894\ s[/tex]
The time difference is
[tex]t=4.92236-1.31894=3.60342\ s[/tex]
The second ball should be thrown 3.60342 seconds later