Answer:3.95 m/s
Explanation:
Given
mass of object [tex]m=3.75 kg[/tex]
[tex]\omega =1.55 rad/s[/tex]
radius of circle [tex]=2.55 m[/tex]
initial Position [tex]r=2.55 \hat{i}[/tex]
angular displacement [tex]\theta _0=8.95 rad[/tex]
8.95 radian can be written as
[tex]1.42 (2\pi )[/tex]
i.e. Particle is at first quadrant with [tex]\theta =0.4242\pi \times \frac{180}{\pi }[/tex]
[tex]\theta =76.36^{\circ}[/tex]
(c)velocity is [tex]v=\omgea \times r[/tex]
[tex]v=1.55\times 2.55=3.95 m/s[/tex]