Express the following sums using sigma notation.
a. 9 plus 10 plus 11 plus 12 plus 13
b. 2 plus 4 plus 6 plus 8 plus 10 plus 12
c. 1 Superscript 6 Baseline plus 2 Superscript 6 Baseline plus 3 Superscript 6 Baseline plus 4 Superscript 6
d. one fifth plus one sixth plus one seventh plus one eighth

Respuesta :

Answer: The given sums in sigma notation are

(a) [tex]\sum_{n=9}^{13}n.[/tex]

(b) [tex]\sum_{n=1}^{6}2n.[/tex]

(c) [tex]\sum_{n=1}^{4}n^6.[/tex]

(d) [tex]\sum_{n=5}^{8}\dfrac{1}{n}.[/tex]

Step-by-step explanation:  We are given to express the following sums using sigma notation.

(a) 9 plus 10 plus 11 plus 12 plus 13.

Here, sum is

[tex]S=9+10+11+12+13.[/tex]

In sigma notation, the given sum can be written as follows :

[tex]S=\sum_{n=9}^{13}n.[/tex]

(b)  2 plus 4 plus 6 plus 8 plus 10 plus 12.

Here, sum is

[tex]S=2+4+6+8+10+12.[/tex]

In sigma notation, the given sum can be written as follows :

[tex]S=\sum_{n=1}^{6}2n.[/tex]

(c)  1 Superscript 6 Baseline plus 2 Superscript 6 Baseline plus 3 Superscript 6 Baseline plus 4 Superscript 6.

Here, sum is

[tex]S=1^6+2^6+3^6+4^6.[/tex]

In sigma notation, the given sum can be written as follows :

[tex]S=\sum_{n=1}^{4}n^6.[/tex]

(d) one fifth plus one sixth plus one seventh plus one eighth.

Here, sum is

[tex]S=\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}.[/tex]

In sigma notation, the given sum can be written as follows :

[tex]S=\sum_{n=5}^{8}\dfrac{1}{n}.[/tex]

Thus, the given sums in sigma notation are

(a) [tex]\sum_{n=9}^{13}n.[/tex]

(b) [tex]\sum_{n=1}^{6}2n.[/tex]

(c) [tex]\sum_{n=1}^{4}n^6.[/tex]

(d) [tex]\sum_{n=5}^{8}\dfrac{1}{n}.[/tex]

spodoe

The answer is:

(a) \sum_{n=9}^{13}n.

(b) \sum_{n=1}^{6}2n.

(c) \sum_{n=1}^{4}n^6.

(d) \sum_{n=5}^{8}\dfrac{1}{n}.

Q&A Education