Respuesta :
Answer:
hi! im sorry if this is wrong, im gonna try my hardest.
V= 160
L= 240
W=34
sry this is prob wrong just wanted to help ;(
The maximum volume of the box is the highest volume the box can assume.
The dimensions of the cardboard is give as:
[tex]\mathbf{Length = 8}[/tex]
[tex]\mathbf{Width = 20}[/tex]
Assume the cut-out is x, the dimension of the cardboard would be:
[tex]\mathbf{Length = 8 - 2x}[/tex]
[tex]\mathbf{Width = 20 - 2x}[/tex]
[tex]\mathbf{Height = x}[/tex]
(a) The expression of volume
Volume is calculated as:
[tex]\mathbf{Volume = Length \times Width \times Height}[/tex]
So, we have:
[tex]\mathbf{V = (8 - 2x) \times (20 - 2x) \times x}[/tex]
Hence, the expression for volume is: [tex]\mathbf{V = (8 - 2x) \times (20 - 2x) \times x}[/tex]
(b) The domain of x
Set the volume to 0
[tex]\mathbf{(8 - 2x) \times (20 - 2x) \times x = 0}[/tex]
Split
[tex]\mathbf{8 - 2x = 0\ or \ 20 - 2x = 0 \ x = 0}[/tex]
Solve for x
[tex]\mathbf{x = 4\ or \ x = 10 \ x = 0}[/tex]
x cannot be negative, 0, 4 or greater.
Hence, the domain is: [tex]\mathbf{(0, 4)}[/tex]
(c) The dimension that maximizes the box
We have:
[tex]\mathbf{V = (8 - 2x) \times (20 - 2x) \times x}[/tex]
Expand
[tex]\mathbf{V = 160x - 56x^2 + 4x^3}[/tex]
Differentiate
[tex]\mathbf{V' = 160 - 102x + 12x^2}[/tex]
Set to 0
[tex]\mathbf{160 - 102x + 12x^2 = 0}[/tex]
Using a calculator, we have:'
[tex]\mathbf{x = 2.1, 6.4}[/tex]
Using the domain in (b), we have:
[tex]\mathbf{x = 2.1}[/tex]
Recall that:
[tex]\mathbf{Length = 8 - 2x}[/tex]
[tex]\mathbf{Width = 20 - 2x}[/tex]
[tex]\mathbf{Height = x}[/tex]
So, we have:
[tex]\mathbf{Length = 3.8}[/tex]
[tex]\mathbf{Width = 15.8}[/tex]
[tex]\mathbf{Height = 2.1}[/tex]
The dimension that maximizes the box is 2.8 by 15.8 by 21. cm
(d) The maximum volume
Recall that:
[tex]\mathbf{Volume = Length \times Width \times Height}[/tex]
So, we have:
[tex]\mathbf{Volume = 3.8 \times 15.8 \times 2.1}[/tex]
[tex]\mathbf{Volume = 126.1}[/tex]
Hence, the maximum volume is 126.1 cubic centimeter
Read more about volumes at:
https://brainly.com/question/1578538