For f(x) = 3x+1 and g(x) = x2 - 6, find (f - g)(x).
O A. 3x² - 17
O B. x2 – 3x-7
O C. -x2+3x+7
O D. - x2 + 3x - 5

Respuesta :

Question:

For f(x) = 3x+1 and g(x) = x^2 - 6, find (f - g)(x)

O A. 3x² - 17

O B. x^2 – 3x-7

O C. -x^2+3x+7

O D. - x^2 + 3x - 5

Answer:

Option C

For f(x) = 3x+1 and g(x) = x^2 - 6 then the value of [tex](f - g)(x) = - x^2 + 3x + 7[/tex]

Solution:

Given that,

[tex]f(x) = 3x + 1[/tex]

[tex]g(x) = x^2 - 6[/tex]

To find:  (f - g)(x)

We know that,

(f – g)(x) = f (x) – g(x)

Let us substitute the given values of f(x) and g(x) to find (f – g)(x)

[tex](f - g)(x) = 3x + 1 - (x^2 - 6)[/tex]

On multiplying the negative sign with terms inside second bracket

[tex](f - g)(x) = 3x + 1 - x^2 + 6[/tex]

[tex](f - g)(x) = 3x - x^2 + 7[/tex]

On rearranging the terms we get,

[tex](f - g)(x) = - x^2 + 3x + 7[/tex]

Thus the value of (f - g)(x) is found out and option C is correct

Otras preguntas

Q&A Education