[tex]\bf (\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})\qquad (\stackrel{x_2}{-5}~,~\stackrel{y_2}{-3}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-3}-\stackrel{y1}{(-1)}}}{\underset{run} {\underset{x_2}{-5}-\underset{x_1}{5}}}\implies \cfrac{-3+1}{-10}\implies \cfrac{-2}{-10}\implies \cfrac{1}{5}[/tex]
[tex]\bf \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-1)}=\stackrel{m}{\cfrac{1}{5}}(x-\stackrel{x_1}{5})\implies y+1=\cfrac{1}{5}(x-5)[/tex]