Answer:
[tex]y=5.63[/tex]
Step-by-step explanation:
Given
[tex]y[/tex] varies directly with [tex]x[/tex]
This means
[tex]y[/tex] ∝ [tex]x[/tex]
This can be written as:
[tex]y=k\ x[/tex]
where [tex]k[/tex] is the constant of proportionality.
We know that when [tex]x=8[/tex] then [tex]y=5[/tex]. Using this we can find value of [tex]k[/tex].
so, we have
[tex]5=k(8)[/tex]
Dividing both sides by 8 to isolate [tex]k[/tex].
[tex]\frac{5}{8}=\frac{k(8)}{8}[/tex]
∴ [tex]k=\frac{5}{8}[/tex]
when [tex]x=9[/tex] then [tex]y[/tex] will be
[tex]y=\frac{5}{8}\times 9[/tex]
∴ [tex]y=\frac{45}{8}\approx 5.63[/tex] (Answer)