The tub of a washer goes into its spin cycle, starting from rest and gaining angular speed steadily for 7.00 s, at which time it is turning at 7.00 rev/s. At this point, the person doing the laundry opens the lid, and a safety switch turns off the washer. The tub smoothly slows to rest in 12.0 s. Through how many revolutions does the tub turn while it is in motion?
_____________ rev

Respuesta :

Answer:

67 revolutions

Explanation:

t = Time taken

[tex]\omega_f[/tex] = Final angular velocity

[tex]\omega_i[/tex] = Initial angular velocity

[tex]\alpha[/tex] = Angular acceleration

[tex]\theta[/tex] = Number of rotation

Equation of rotational motion

[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\frac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\frac{7-0}{7}\\\Rightarrow a=1\ rev/s^2[/tex]

[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}\\\Rightarrow \theta=\frac{7^2-0^2}{2\times 1}\\\Rightarrow \theta=24.5\ rev[/tex]

Number of revolutions in the 7 seconds is 24.5

[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\frac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\frac{0-7}{12}\\\Rightarrow a=-0.583\ rev/s^2[/tex]

[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}\\\Rightarrow \theta=\frac{0^2-7^2}{2\times -0.583}\\\Rightarrow \theta=42.02\ rev[/tex]

Number of revolutions in the 12 seconds is 42.02

Total total number of revolutions in the 20 second interval is 24.5+42.02 = 66.52 = 67 revolutions

Q&A Education