Find a unit vector normal to the plane containing Bold u equals 2 Bold i minus Bold j minus 3 Bold k and Bold v equals negative 3 Bold i plus Bold j minus 2 Bold k.

Respuesta :

Answer:

[tex]\hat{w}=\dfrac{\vec{5i+13j-k}}{13.92}[/tex]

Explanation:

It is given that,

[tex]\vec{u}=2i-j-3k[/tex]

[tex]\vec{v}=-3i+j-2k[/tex]

Taking the cross product of v and v such that,

[tex]\vec{w}=u\times v[/tex]

[tex]\vec{w}=(2i-j-3k)\times (-3i+j-2k)[/tex]

[tex]\vec{w}=5i+13j-k[/tex]

[tex]|w|=\sqrt{5^2+13^2(-1)^2}[/tex]

|w| = 13.92

Let [tex]\hat{w}[/tex] is the unit vector normal to the plane containing u and v. So,

[tex]\hat{w}=\dfrac{\vec{w}}{|w|}[/tex]

[tex]\hat{w}=\dfrac{\vec{5i+13j-k}}{13.92}[/tex]

Hence, this is the required solution.

Q&A Education