Respuesta :

Answer:

Part 1) The unit rate is [tex]16\frac{dollars}{ounce}[/tex]

Part 2) The unit rate is [tex]\frac{1}{4}\frac{dollars}{ounce}[/tex]

Part 3) The unit rate is [tex]\frac{1}{4}\frac{dollars}{ounce}[/tex]

Part 4) The unit rate is [tex]4\frac{dollars}{ounce}[/tex]

see the attached figure

Step-by-step explanation:

we know that

The formula to calculate the slope between two points is equal to

[tex]m=\frac{d2-d1}{n2-n1}[/tex]

where

d ----> number of dollars (dependent variable or output value)

n ---> number of ounces (independent variable or input value)

Remember that the slope of the linear equation is the same that the unit rate

Verify each case

1) we have

[tex]d=16n[/tex]

This is a proportional relationship between the variables d and n

The slope is

[tex]m=16\frac{dollars}{ounce}[/tex]

therefore

The unit rate is [tex]16\frac{dollars}{ounce}[/tex]

2) we have

First table

take two points from the table

(4,1) and (16,4)

substitute in the formula of slope

[tex]m=\frac{d2-d1}{n2-n1}[/tex]

[tex]m=\frac{4-1}{16-4}[/tex]

[tex]m=\frac{3}{12}\frac{dollars}{ounce}[/tex]

simplify

[tex]m=\frac{1}{4}\frac{dollars}{ounce}[/tex]

therefore

The unit rate is [tex]\frac{1}{4}\frac{dollars}{ounce}[/tex]

3) we have

[tex]n=4d[/tex]

This is a proportional relationship between the variables d and n

isolate the variable d

[tex]d=\frac{1}{4}n[/tex]

The slope is

[tex]m=\frac{1}{4}\frac{dollars}{ounce}[/tex]

therefore

The unit rate is [tex]\frac{1}{4}\frac{dollars}{ounce}[/tex]

4) we have

Second table

take two points from the table

(1,4) and (2,8)

substitute in the formula of slope

[tex]m=\frac{d2-d1}{n2-n1}[/tex]

[tex]m=\frac{8-4}{2-1}[/tex]

[tex]m=4\frac{dollars}{ounce}[/tex]

therefore

The unit rate is [tex]4\frac{dollars}{ounce}[/tex]

Ver imagen calculista
Q&A Education