Answer:
[tex]\omega_f = 0.314\ rad/s[/tex]
Explanation:
given,
door dimension  = 1 m x 2 m
mass of = 43 Kg
Mass of dust = 0.7 Kg
speed of the door = 13 m/s
[tex]I_{total} =I_{door} + I_{mud}[/tex]
[tex]I_{total} =
\dfrac{1}{3}MW^2 + m(\dfrac{W}{2})^2[/tex]
a) from conservation of angular momentum Â
[tex]L_i = L_f[/tex]
[tex] mv\dfrac{W}{2} = I_{total}\omega_f[/tex]
[tex] mv\dfrac{W}{2}= (\dfrac{1}{3}MW^2 + m(\dfrac{W}{2})^2)\omega_f[/tex]
[tex]\omega_f=\dfrac{mv\dfrac{W}{2}}{\dfrac{1}{3}MW^2 + m(\dfrac{W}{2})^2}[/tex]
[tex]\omega_f= \dfrac{\dfrac{mv}{2}}{\dfrac{MW }{3}+(\dfrac{mW}{4})}[/tex]
[tex]\omega_f= \dfrac{\dfrac{0.7\times 13}{2}}{\dfrac{43\times 1 }{3}+(\dfrac{0.7\times 1}{4})}[/tex]
[tex]\omega_f = 0.314\ rad/s[/tex]
b) angular speed without considering mud
[tex]\omega_f= \dfrac{\dfrac{mv}{2}}{\dfrac{MW }{3}+(\dfrac{mW}{4})}[/tex]
[tex]\omega_f= \dfrac{\dfrac{0.7\times 13}{2}}{\dfrac{43\times 1 }{3}}[/tex]
[tex]\omega_f = 0.317\ rad/s[/tex]
there is no significant contribution of mud in moment of inertia .
Â