Answer:
Explanation:
Given
wavelength of emissions are
[tex]\lambda _1=589 nm[/tex]
[tex]\lambda _2=589.6 nm[/tex]
Energy is given by
[tex]E=\frac{hc}{\lambda }[/tex]
where h=Planck's constant
x=velocity of Light
[tex]\lambda [/tex]=wavelength of emission
[tex]E_1=\frac{6.626\times 10^{-34}\times 3\times 10^8}{589\times 10^{-9}}[/tex]
[tex]E_1=3.374\times 10^{-19} J[/tex]
[tex]E_1 in kJ/mol[/tex]
[tex]E_1=203.2 kJ/mol[/tex]
frequency corresponding to this emission
[tex]\nu =\frac{c}{\lambda }[/tex]
[tex]\nu _1=\frac{3\times 10^8}{589\times 10^{-9}}[/tex]
[tex]\nu _1=5.09\times 10^{14} Hz[/tex]
Energy corresponding to [tex]\lambda _2[/tex]
[tex]E_2=\frac{6.626\times 10^{-34}\times 3\times 10^8}{589.6\times 10^{-9}}[/tex]
[tex]E_2=3.371\times 10^{-19} J[/tex]
[tex]E_2=203.02 kJ/mol[/tex]
frequency corresponding to this emission
[tex]\nu =\frac{c}{\lambda }[/tex]
[tex]\nu _1=\frac{3\times 10^8}{589.6\times 10^{-9}}[/tex]
[tex]\nu _1=5.088\times 10^{14} Hz[/tex]