Respuesta :

The correct option is B). f(x)

The minimum value for y belongs to f(x) at x=0 and f(0)=(-2)

Step-by-step explanation:

The given two functions are f(x)=[tex]x^{5} -2[/tex] and g(x)=[tex]3x^{2} +1[/tex]

To find which function got minimum value for y :

For function f(x)=[tex]x^{5} -2[/tex]  

Using concept of Maxima and Minima,

Function : f(x)=[tex]x^{5} -2[/tex]

Differentiating the function we get,

[tex]\frac{d}{dx}[/tex]f(x)=[tex]5x^{4} [/tex]

Take [tex]\frac{d}{dx}[/tex]f(x)=0

[tex]5x^{4}=0 [/tex]

x=0

Therefore, f(x)=f(0)=0-2=(-2)

For function g(x)=[tex]3x^{2} +1[/tex]

Using concept of Maxima and Minima,

Function : g(x)=[tex]3x^{2} +1[/tex]

Differentiating the function we get,

[tex]\frac{d}{dx}[/tex]g(x)=[tex]6x^{1} [/tex]

Take [tex]\frac{d}{dx}[/tex]g(x)=0

[tex]6x^{1} [/tex] =0

x=0

Therefore, g(x)=g(0)=0+1=1

Thus, The minimum value for y belongs to f(x) at x=0 and f(0)=(-2)

The correct option is B). f(x)

Answer:

B.) f(x)

Step-by-step explanation:

A P E X

Q&A Education