Suppose that the saturation magnetization Mmax of the ferromagnetic metal nickel is 4.41 × 105 A/m. Calculate the magnetic moment of a single nickel atom. (The density of nickel is 8.90 g/cm3 and its molar mass is 58.71 g/mol.)

Respuesta :

Answer : The magnetic moment of a single nickel atom is [tex]4.82\times 10^{-24}Am^2[/tex]

Explanation :

Formula used :

[tex]M_{max}=(\frac{N}{V})\times \mu[/tex]

where,

[tex]M_{max}[/tex] = saturation magnetization = [tex]4.41\times 10^5A/m[/tex]

N = Avogadro's number = [tex]6.022\times 10^{23}atoms/mol[/tex]

V = volume of nickel atom

[tex]\mu[/tex] = magnetic moment

First we have to calculate the volume of nickel atom.

[tex]Density=\frac{Mass}{Volume}[/tex]

[tex]8.90g/cm^3=\frac{58.71g/mol}{Volume}[/tex]

[tex]Volume=\frac{58.71g}{8.90g/cm^3}[/tex]

[tex]Volume=6.59cm^3=6.59\times (100)^3m^3[/tex]

Now we have to calculate the magnetic moment of a single nickel atom.

[tex]M_{max}=(\frac{N}{V})\times \mu[/tex]

[tex]4.41\times 10^5=(\frac{(6.022\times 10^{23})}{6.59})\times (100^3)\times \mu[/tex]

[tex]\mu=4.82\times 10^{-24}Am^2[/tex]

Therefore, the magnetic moment of a single nickel atom is [tex]4.82\times 10^{-24}Am^2[/tex]

Q&A Education