ASAP! Simplify -5 - square root -44

A. -5-4 square root 11i
B. -5-4i square root 11
C. -5-2i square root 11
D. -5-2 square root 11i

Respuesta :

Answer:

[tex]\boldmath-5-2i\sqrt{\boldmath11}[/tex]

Step-by-step explanation:

The not simplified form is [tex]-5-\sqrt{-44}[/tex]

you know that [tex]\sqrt{a\times b} = \sqrt{a} \times\sqrt{b}[/tex] is true a and b are both positive or one of it is negative (not both of them).

You can write -44 as -1 × 4 × 11 inside square root.

So, [tex]\sqrt{-44} = \sqrt{-1\times4\times11}=\sqrt{-1}\times\sqrt{4}\times\sqrt{11}=i\times2\times\sqrt{11}[/tex]         ([tex]\sqrt{4}=2[/tex])

[tex]\therefore -5-\sqrt{-44} = -5-2i\sqrt{11}[/tex]

(NOTE : You must know that [tex]\boldmath\sqrt{\boldmath-1}[/tex] is written as [tex]\boldsymbol i[/tex] )

Q&A Education