The given points are the vertices of the quadrilateral
[tex]Q=\left\{(x,y)\mid-2\le x\le1,\dfrac{2x-5}3\le y\le\dfrac{4x+11}3\right\}[/tex]
By Green's theorem, the line integral is
[tex]\displaystyle\int_C2xy\,\mathrm dx+xy^2\,\mathrm dy=\iint_Q\frac{\partial(xy^2)}{\partial x}-\frac{\partial(2xy)}{\partial y}\,\mathrm dA[/tex]
[tex]=\displaystyle\int_{-2}^1\int_{(2x-5)/3}^{(4x+11)/3}y^2-2x\,\mathrm dy\,\mathrm dx=\boxed{61}[/tex]