Answer: n= 14
Step-by-step explanation:
The formula to find the sample size :_
[tex]n= p(1-p)(\dfrac{z^*}{E})^2[/tex]
, where p= Prior estimate of population proportion.
z* = Â Critical value.
E= Margin of error.
Given : Prior estimate of population proportion : p= 0.025
We know that  , the critical value for 90% confidence interval :
[tex]z^*=1.645[/tex]
E= 7.0%=0.070
Then , the required minimum sample size :
[tex]n= (0.025)(1-0.025)(\dfrac{1.645}{0.07})^2\\\\=(0.025)(0.975)(23.5)^2\\\\13.46109375\approx14[/tex]
i.e. n= 14
Hence, the sample size needed : n= 14