Respuesta :
The average power is [tex]3.0\cdot 10^6 W[/tex]
Explanation:
First of all, we calculate the work done to accelerate the car; according to the work-energy theorem, the work done is equal to the change in kinetic energy of the car:
[tex]W=K_f -K_i= \frac{1}{2}mv^2-\frac{1}{2}mu^2[/tex]
where :
[tex]K_f = \frac{1}{2}mv^2[/tex] is the final kinetic energy of the car, with
m = 2000 kg is the mass of the car
v = 60 m/s is the final speed of the car
[tex]K_i = \frac{1}{2}mu^2[/tex] is the initial kinetic energy of the car, with
u = 30 m/s is initial speed of the car
Soolving:
[tex]W=\frac{1}{2}(2000)(60)^2 - \frac{1}{2}(2000)(30)^2=2.7\cdot 10^6 J[/tex]
Now we can find the power required for the acceleration, which is given by
[tex]P=\frac{W}{t}[/tex]
where
t = 9 s is the time elapsed
Solving:
[tex]P=\frac{2.7\cdot 10^6}{9}=3.0\cdot 10^6 W[/tex]
Learn more about power:
brainly.com/question/7956557
#LearnwithBrainly
The power is "300,000 W".
Power calculation:
[tex]\text{Mass} \ m= 2000\ kg\\\\ \text{intial velocity}\ u= 30 \frac{m}{s}\\\\ \text{final velocity}\ v= 60 \frac{m}{s}\\\\\text{Power}=?[/tex]
Using the formula for calculating the initial kinetic energy:
[tex]\to (K.E)_1 = \frac{1}{2}\ mu^2\\\\[/tex]
[tex]\to (K. E)_1 =\frac{1}{2}\times 2000\times 30^2[/tex]
[tex]= 900,000 \ J\\\\[/tex]
Using the formula for calculating the final kinetic energy:
[tex]\to (K.E)^2 = \frac{1}{2} m v^2 \\\\[/tex]
[tex]\to (K. E.)_2 = 1\times 2000 \times 60^2 \\\\[/tex]
[tex]=3600,000\ J\\\\[/tex]
Using the formula for calculating the power:
Power[tex]P= \frac{\text{Change in kinetic energy}}{time}\\\\[/tex]
[tex]\to \frac{(KE)_2-(k.E)_2}{time} =\frac{3600000 - 900000}{9}\\\\[/tex]
[tex]= \frac{2700000}{9} \\\\= 300,000\ W \\\\[/tex]
Therefore, the final answer is "300,000 W".
Learn more information about the power here:
brainly.com/question/24473485