Respuesta :

8.854 m/s is the speed of the box after it reaches bottom of the ramp.

Explanation:

From the figure we came to know that height of the block is 4 m.

We know that,

Total "initial energy of an object" = Total "final energy of an object "

Total "initial energy of an object" is = "sum of potential energy" and "kinetic energy" of an object at its initial position.

[tex]\text { "g" acceleration due to gravity is } 9.8 \mathrm{m} / \mathrm{s}^{2}[/tex]

[tex]\text { Total initial energy }=\mathrm{m} \times \mathrm{g} \times \mathrm{h}_{\mathrm{i}}+\frac{1}{2} \mathrm{m} v_{i}^{2}[/tex]

Initial velocity is “0” as the object does not have starting speed

[tex]\text { Height of the block where the object is placed initially }\left(h_{i}\right) \text { is } 4 \mathrm{m} \text { . }[/tex]

[tex]\text { Total initial energy }=\mathrm{m} \times 9.8 \times 4+\frac{1}{2} \mathrm{m} 0^{2}[/tex]

Total initial energy = 39.2 × m

[tex]\text { Total final energy }=\mathrm{m} \times \mathrm{g} \times \mathrm{h}_{\mathrm{f}}+\frac{1}{2} m v_{f}^{2}[/tex]

[tex]\text { We need to find final velocity } v_f[/tex]

[tex]\text { Height of the block where the object is travelled to bottom (h_) is } 0 \mathrm{m} \text { . }[/tex]

[tex]\text { Total final energy }=\mathrm{m} \times 9.8 \times 0+\frac{1}{2} m v_{f}^{2}[/tex]

Now,  Total initial energy of an object = Total final energy of an object

[tex]39.2 \times \mathrm{m}=0.5 \mathrm{m} v_{f}^{2}[/tex]

[tex]\frac{39.2}{0.5}=v_{f}^{2}[/tex]

[tex]v_{f}^{2}=78.4[/tex]

[tex]v_{f}=\sqrt{78.4}[/tex]

[tex]v_{f}=8.854 \mathrm{m} / \mathrm{s}[/tex]

Final speed is 8.854 m/s.

Q&A Education