Answer:
The correct option is A. 440
Step-by-step explanation:
Let a, b and c represents the number of orders from forms A, B and C,
According to the question,
[tex]a = 40[/tex],
[tex]b = 4a + \frac{1}{2}c[/tex]
[tex]c = a + \frac{1}{2}c[/tex]
From these equations we get,
[tex]b = 160 + \frac{1}{2}c----(1)[/tex]
[tex]c = 40 + \frac{1}{2}b---(2)[/tex]
Substitute the value of b from (1) to (2),
[tex]c = 40 + \frac{1}{2}(160 + \frac{1}{2}c)[/tex]
[tex]c = 40 + 80 + \frac{1}{4}c[/tex]
[tex]c-\frac{1}{4}c = 120[/tex]
[tex]\frac{4c-c}{4}=120[/tex]
[tex]\frac{3c}{4}=120[/tex]
[tex]c=\frac{480}{3}=160[/tex]
From (1),
[tex]b = 160 + \frac{1}{2}(160)=160 + 80 = 240[/tex]
[tex]\because a + b + c = 40 + 240 + 160 = 440[/tex]
Hence, he used 440 forms total,
i.e. OPTION A is correct.