A 144-g baseball moving 29 m/s strikes a stationary 5.25-kg brick resting on small rollers so it moves without significant friction. After hitting the brick, the baseball bounces straight back, and the brick moves forward at 1.32 m/s . Determine the baseball's speed after the collision.

Part B Determine the total kinetic energy before the collision.

total kinetic energy after the collision.

Respuesta :

Answer

given,

mass of baseball(m) = 144 g = 0.144 Kg

initial velocity(u) = 29 m/s

mass of brick(M) = 5.25 Kg

speed of the brick (v') = 1.32

speed of base ball after collision = ?

using conservation of momentum

 m u = m v + Mv'

 0.144 x 29 = 0.144 v + 5.25 x 1.32

 0.144 v = -2.754

  v = -19.125 m/s

b) KE before collision

  [tex]KE = \dfrac{1}{2}mv^2[/tex]

  [tex]KE = \dfrac{1}{2}\times 0.144 \times 29^2[/tex]

       KE_i = 60.55 J

KE after collision

  [tex]KE = \dfrac{1}{2}mv^2 +\dfrac{1}{2}Mv'^2[/tex]

  [tex]KE = \dfrac{1}{2}\times 0.144\times 19.125^2 +\dfrac{1}{2}\times 5.25\times 1.32^2 [/tex]

        KE_f = 30.91 J

Q&A Education