Find the volume of the solid cut from the​ thick-walled cylinder 1 less than or equals x squared plus y squared less than or equals 2 by the cones z equals plus or minus StartRoot 4 x squared plus 4 y squared EndRoot.

Respuesta :

Answer:

[tex]4/3(2\sqrt{2}  -1)*\pi[/tex] this is the answer

Step-by-step explanation:

[tex]1<= x^2+y^2 <= 2 by the cons z= +- \sqrt{(x^2 + y^2)}[/tex]

Let suppose

x = r∙cos(θ)

y = r∙cos(θ)

z = z

The differential volume element changes to

dV = dxdydz = r drdθdz

The limits of integration  in cylindrical coordinates are:

The limits of integration  in cylindrical coordinates are:  

(i)

[tex]1 \leq  x^2 + y^2\leq  2[/tex]

[tex]1 \leq  r^2 \leq  2[/tex]

since r is always positive

[tex]1 \leq  r \leq \sqrt{2}[/tex]

(ii)

[tex]- \sqrt{(x^2+ y^2)}  \leq z \leq +\sqrt{(x^2+ y^2)}[/tex]

[tex]- r \leq  z  \leq  r[/tex]

(iii)  

[tex]0 \leq Theta \leq 2∙π[/tex]

 we have no restrictions in radial direction.

[tex]V = \int\limits^a_b { dV} \,[/tex]

Remaining derivation has been explained in the atatchment where we get the volume of the cylinder

Ver imagen kalsoomtahir1
Q&A Education