Respuesta :
Answer:
Time=2.72 seconds
Front wheel reactions= 1393 lb
Rear wheel reactions= 857 lb
Explanation:
The free body diagram is assumed to be the one attached here
The mass, m of the car is Â
[tex]M=\frac {W}{g}[/tex] where W is weight and g is acceleration due to gravity
Taking g as [tex]32.2 ft/s^{2}[/tex] then Â
[tex]M=\frac {4500}{32.2}=139.75 lbm[/tex]
Considering equilibrium in x-axis
[tex]Ma_G-f=0[/tex]
[tex]Ma_G-(\mu_g\times 2N_B)=0[/tex]
[tex]139.75\times a_G-(0.3\times 2\times N_B)=0[/tex]
[tex]0.6N_B=139.75a_g[/tex]
[tex]N_B=232.92a_g[/tex]
At point A using the law of equilibrium, the sum of moments is 0 hence
[tex]-2N_B(6)+4500(2)=-Ma_G(2.5) [/tex]
[tex]-12N_B+9000=-139.75a_G\times 2.5[/tex]
[tex]-12(232.92a_G)+900=-349.375a_G[/tex]
[tex]a_g\approx 3.68 ft/s^{2}[/tex]
The normal reaction at B is therefore
[tex]N_B=232.92a_G=232.92\times 3.68\approx 857 lb[/tex]
Consider equilibrium in y-axis
[tex]4500-2N_A-2N_B=0[/tex]
[tex]N_A+N_B=2250[/tex]
[tex]N_A+857=2250[/tex]
[tex]N_A=1393 lb[/tex]
To find time that the car takes to a speed of 10 ft/s
Using kinematic equation
V=u+at
10=0+3.68t
[tex]t=\frac {10}{3.68}\approx 2.72 s[/tex]