A simple, harmonic oscillator at the point x=0 generates a wave on a rope. The oscillator operates at a frequency of 40 Hz and with an amplitude of 3.00 cm. The rope has a linear mass density of 50.0 g/m and is stretched with a tension of 5.00 N.

Respuesta :

Answer

given,

Frequency of oscillator = 40 Hz

Amplitude = 3 cm

linear mass density of rope = 50 x 10⁻³ kg/m

tension = T = 5 N

calculating the speed of wave

  [tex]v = \sqrt{\dfrac{T}{\mu}}[/tex]

μ is linear mas density of rope

  [tex]v = \sqrt{\dfrac{5}{50\times 10^{-3}}}[/tex]

        v = 10 m/s

now, calculating the wavelength of the

[tex]\lambda = \dfrac{v}{f}[/tex]

[tex]\lambda = \dfrac{10}{40}[/tex]

    λ = 0.25 m

now calculating transverse acceleration

 a = A ω²

 ω = 2 π f

 ω = 2 π x 40 = 251.32 /m

 a = 0.03 x 251.32²

a = 1894.96 m/s²

Q&A Education