Find all points of intersection of the given curves. (Assume 0 ≤ θ < 2π and r ≥ 0. Order your answers from smallest to largest θ. If an intersection occurs at the pole, enter POLE in the first answer blank.) r = sin(θ), r = sin(2θ)

Respuesta :

Answer:

[tex]\theta=0(\:pole),\frac{\pi}{3},\frac{5\pi}{3}[/tex]

Step-by-step explanation:

The given system of polar equations are:

[tex]r=\sin \theta[/tex]

[tex]r=\sin 2\theta[/tex]

We equate both equations to get:

[tex]\sin 2\theta=\sin \theta[/tex]

We rewrite to get:

[tex]\sin 2\theta-\sin \theta=0[/tex]

Apply the double angle property to get:

[tex]2\sin \theta \cos \theta-\sin \theta=0[/tex]

Factor now to get:

[tex]\sin \theta( 2\cos \theta-1)=0[/tex]

[tex]\implies \sin \theta=0\:or\:\cos \theta=0.5[/tex]

Hence [tex]\theta=0,\frac{\pi}{3},\frac{5\pi}{3}[/tex]

Ver imagen kudzordzifrancis
Q&A Education