Answer:
0.0027 V
0.000625 V
EMF doubles
Explanation:
[tex]B_i[/tex] = Initial magnetic field = 0.2 T
[tex]B_f[/tex] = Final magnetic field = 1.4 T
t = Time taken = 1.6 s
A = Area
N = Number of turns
Induced emf is given by
[tex]E=\frac{N(B_f-B_i)A}{dt}\\\Rightarrow E=\frac{(1.4-0.2)3.6\times 10^{-3}}{1.6}\\\Rightarrow E=0.0027\ V[/tex]
Emf is 0.0027 V
[tex]A_i[/tex] = Initial area = [tex]3.6\times 10^{-3}\ m^2[/tex]
[tex]A_f[/tex] = Final area = [tex]1.6\times 10^{-3}\ m^2[/tex]
B = 0.5 T
Induced emf is given by
[tex]E=\frac{NB(A_f-A_i)}{dt}\\\Rightarrow E=\frac{0.5(1.6\times 10^{-3}-3.6\times 10^{-3})}{1.6}\\\Rightarrow E=-0.000625\ V[/tex]
The new emf in the loop will be 0.000625 V (magnitude)
If the number of turns is doubled then the emf doubles as [tex]E\propto N[/tex]