Given the following functions:

f(x)=x2
g(x)=x−3


Find the composition of the two functions and show your process:

f(g(x))

*** Caution: this is different from
g(f(x))

2. Given the following functions:

f(x)=x2
g(x)=x−3


Find the composition of the two functions and show your process:

g(f(x))


Caution: This is different from
f(g(x))

3. If the composition of two functions is:

1x−3


What would be the domain restriction? Describe how you found that answer.

Respuesta :

Answer:

1) [tex] {\bf f }\circ {\bf g}(x) ={\bf x^2}-{\bf6x}+{\bf9}[/tex] and  [tex] {\bf g }\circ {\bf f}(x)={\bf x^2}-{\bf3}[/tex] are not equal

ie,[tex] {\bf f} \circ {\bf g}(x) \neq {\bf g} \circ{\bf f}(x)[/tex]

2) The domain is x

Step-by-step explanation:

Given functions are [tex]f(x)=x^2[/tex] and [tex] g(x) = x-3 [/tex]

now find the composition of two functions verify that

[tex] f \circ g = g {\circ} f [/tex]

now find the composition of  [tex] f\circ g[/tex]

[tex] f \circ g=f(g(x))[/tex]

[tex] f \circ g=f(x-3)[/tex]

[tex] f \circ g=(x-3)^2[/tex]

[tex] f \circ g=x^2-2(x)(3)+3^2[/tex]

[tex] f \circ g=x^2-6x+9[/tex]

now find the composition of  [tex] g \circ f[/tex]

[tex] g \circ f=g(f(x))[/tex]

[tex] g \circ f=g(x^2)[/tex]

[tex] g \circ f=x^2-3[/tex]

Comparing the above two compositions we get

[tex] f \circ g = x^2-6x+9[/tex] and  [tex] g \circ f= x^2-3[/tex] are not equal

ie, [tex] f \circ g \neq g \circ f[/tex].

2) Given that the composition of two function is x-3

Let the functons be f(x) and g(x)

so the composition of two function  [tex] f \circ g=x-3[/tex]

it may be written as [tex] f(g(x))=x-3 [/tex]

   [tex] g(x)=f^{-1}(x-3)[/tex]

                                     [tex] g(x)=x-3[/tex]

Q&A Education