1. Solve.

The product of −2c+14 and the multiplicative inverse of −12


2. Solve.

10+(m−10)


3. Solve.

6w+3−3


4. Write the expression in standard form

13(3x+6)


5. Write the expression in standard form

15(5x−10)−3

Respuesta :

frika

Answer:

1. [tex]\dfrac{c}{6}-\dfrac{7}{6}[/tex]

2. m

3. 6w

4. 39x + 78

5. 75x - 153

Step-by-step explanation:

1. The product of −2c+14 and the multiplicative inverse of −12 is

[tex](-2c+14)\cdot \dfrac{1}{-12}[/tex]

Use distributive property:

[tex](-2c+14)\cdot \dfrac{1}{-12}\\ \\=-\dfrac{1}{12}\cdot (-2c)-\dfrac{1}{12}\cdot 14\\ \\=\dfrac{c}{6}-\dfrac{7}{6}[/tex]

2. Solve 10+(m−10)

Open the brackets remembering that the sign before brackets is "+":

[tex]10+(m-10)\\ \\=10+m-10[/tex]

Combine the like terms usin commutative property:

[tex]10+m-10\\ \\=(10-10)+m\\ \\=0+m \\ \\=m[/tex]

3. Solve 6w+3−3

Combine the like terms:

[tex]6w+3-3\\ \\=6w+(3-3)\\ \\=6w+0\\ \\=6w[/tex]

4. Write the expression in standard form 13(3x+6).

Use distributive property:

[tex]13(3x+6)\\ \\=13\cdot 3x+13\cdot 6\\ \\=39x+78[/tex]

5. Write the expression in standard form 15(5x−10)−3.

Use distributive property:

[tex]15(5x-10)-3\\ \\=15\cdot 5x-15\cdot 10-3\\ \\=75x-150-3[/tex]

Combine the like terms:

[tex]=75x+(-150-3)\\ \\=75x-(150+3)\\ \\=75x-153[/tex]

Q&A Education