Respuesta :
Answer:
[tex]5.127 \mathrm{m} / \mathrm{s}^{2} \text { is the "centripetal acceleration" of the car. }[/tex]
Explanation:
Given that,
Mass of the car (m) is 1380 kg
Radius of the car turned (r) is 19.0 m
Speed or velocity of the car (V) is 9.87 m/s
To calculate the “centripetal acceleration” of a car:
[tex]\text { We know that "centripetal acceleration" }(\mathrm{ac})=\frac{\mathrm{V}^{2}}{\mathrm{r}}[/tex]
Substitute the given values in the above formula,
[tex]\text { Centripetal acceleration }\left(a_{c}\right)=\frac{(9.87 m / s)^{2}}{19 m}[/tex]
[tex]\text { Centripetal acceleration }\left(a_{c}\right)=\frac{97.4169 \mathrm{m}^{2} / s^{2}}{19 \mathrm{m}}[/tex]
[tex]\text { Centripetal acceleration }\left(a_{c}\right)=5.127 \mathrm{m} / \mathrm{s}^{2}[/tex]
[tex]\text { Therefore, centripetal acceleration is } 5.127 \mathrm{m} / \mathrm{s}^{2}[/tex]