Respuesta :
2.71 m/s fast Hans is moving after the collision.
Explanation:
Given that,
Mass of Jeremy is 120 kg ([tex]M_J[/tex])
Speed of Jeremy is 3 m/s ([tex]V_J[/tex])
Speed of Jeremy after collision is ([tex]V_{JA}[/tex]) -2.5 m/s
Mass of Hans is 140 kg ([tex]M_H[/tex])
Speed of Hans is -2 m/s ([tex]V_H[/tex])
Speed of Hans after collision is ([tex]V_{HA}[/tex])
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is Â
= [tex]=\mathrm{M}_{1} \times \mathrm{V}_{\mathrm{J}}+\mathrm{M}_{\mathrm{H}} \times \mathrm{V}_{\mathrm{H}}[/tex]
Substitute the given values,
= 120 Ă— 3 + 140 Ă— (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is Â
= [tex]=\mathrm{M}_{\mathrm{J}} \times \mathrm{V}_{\mathrm{JA}}+\mathrm{M}_{\mathrm{H}} \times \mathrm{V}_{\mathrm{HA}}[/tex]
= 120 Ă— (-2.5) + 140 Ă— [tex]V_{HA}[/tex]
= -300 + 140 Ă— [tex]V_{HA}[/tex]
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 Ă— [tex]V_{HA}[/tex]
80 + 300 = 140 Ă— [tex]V_{HA}[/tex]
380 = 140 Ă— [tex]V_{HA}[/tex]
380/140= [tex]V_{HA}[/tex]
[tex]V_{HA}[/tex] = 2.71 m/s
2.71 m/s fast Hans is moving after the collision.