HELP!!!!! You will receive Branliest! Solve the proof using the identities. Make sure to only solve the left side, leave the right side as is.[tex]\frac{1-sin^{2}\beta}{cos^{2}\beta-1} = -cot^{2} \beta[/tex]

Respuesta :

Answer:

Proven

Step-by-step explanation:

The given identity is

[tex]\frac{1-sin^2\beta }{cos^2\beta -1}=-cot^2\beta[/tex]

We use the fundamental trigonometric relationship

[tex]sin^2x+cos^2x=1[/tex]

Or equivalently

[tex]sin^2x=1-cos^2x[/tex]

[tex]cos^2x=1-sin^2x[/tex]

Using them in the left hand side

[tex]\frac{1-sin^2\beta }{cos^2\beta -1}=\frac{cos^2\beta }{-sin^2\beta}=-\left ( \frac{cos\beta }{sin\beta} \right )^2=-cot^2\beta[/tex]

Hence proven

Q&A Education