Respuesta :

Answer:

sin(x)-cos(x)

Step-by-step explanation:

[tex]\frac{\frac{1}{cos(x)} - \frac{1}{sin(x)}  }{\frac{1}{sin(x)} * \frac{1}{cos(x)}  }[/tex]

Simplify the denominator:

[tex]\frac{\frac{1}{cos(x)} - \frac{1}{sin(x)}  }{\frac{1}{cos(x)sin(x)}  }[/tex]

Simplify the numerator:

[tex]\frac{{\frac{2(sin(x)-cos(x))}{sin(2x)} }  }{\frac{1}{sin(x)} * \frac{1}{cos(x)}  }[/tex]

Divide the fractions: (a/b)/(c/d) = (a * d)/(b * c):

[tex]\frac{(-cos(x)+sin(x))*2cos(x)sin(x)}{sin(2x)}[/tex]

Use the identity: 2cos(x)sin(x) = sin(2x):

[tex]\frac{sin(2x)(-cos(x)+sin(x))}{sin(2x)}[/tex]

Cancel out the common factor (sin(2x)):

-cos(x) + sin(x)

Simplify:

sin(x) - cos(x)

Q&A Education