Answer:
EOQ 100
2.5 order per day
every 146 days
For EOQ of 150 then ordering cost should be of 45 dollar
Explanation:
Economic order quantity:
[tex]Q_{opt} = \sqrt{\frac{2DS}{H}}[/tex]
Where:
D = annual demand = 250
S= setup cost = ordering cost = 20
H= Holding Cost = 1.00
[tex]Q_{opt} = \sqrt{\frac{2(250)(20)}{1}}[/tex]
EOQ = 100
order per year: 250 / 100 = 2.5 order per year
days between orders:
365 / 2.5 = 146 days
part B:
To make 150 units the EOQ the optimal order quantity
then ordering cost should be:
[tex]150 = \sqrt{\frac{2(250)(S)}{1}}[/tex]
[tex]150^2 = 500(S)}[/tex]
[tex]22,500 / 500 = S}[/tex]
S = $45