Answer:
[tex]2(a^3+b^2+11)+1(3+a^3+b+11)=3a^3+2b^2+b+36[/tex]
Step-by-step explanation:
I assume that you need simplification of the given expression.
The given expression is:
[tex]2(a^3+b^2+11)+1(3+a^3+b+11)[/tex]
Using distributive property and multiplying 2 inside the parenthesis and 1 inside the other parenthesis. This gives,
[tex]2(a^3+b^2+11)=2\times a^3+2\times b^2+2\times 11\\2(a^3+b^2+11)=2a^3+2b^2+22\\\\1(3+a^3+b+11)=1\times 3+1\times a^3+1\times b+1\times 11\\1(3+a^3+b+11)=3+a^3+b+11=a^3+b+14[/tex]
Therefore, [tex]2(a^3+b^2+11)+1(3+a^3+b+11)[/tex] is equal to:
[tex]2a^3+2b^2+22+a^3+b+14[/tex]
Now, combining like terms using the commutative property of addition, we get:
[tex]=(2a^3+a^3)+2b^2+b+(22+14)\\=3a^3+2b^2+b+36[/tex]
Therefore, the simplified form is [tex]3a^3+2b^2+b+36[/tex]