. A line shaft rotating at 200 r.p.m. is to transmit 20 kW. The allowable shear stress for the material of the shaft is 42 MPa. If the shaft carries a central load of 900 N and is simply supported between bearing 3 metre apart, determine the diameter of the shaft. The maximum tensile or compressive stress is not to exceed 56 MPa.

Respuesta :

Answer:

diameter=53.4 mm to 55 mm

Explanation:

Ver imagen Khoso123

The diameter of the shaft will be ;  ≥ 52.13 mm

Using the given data :

Power ( p ) = 20 * 10³ W

N ( revolution ) = 200 r.p.m

W ( load weight ) = 900 Newtons

L = 3 m

Shear stress ( [tex]\frac{\pi }{16} * 42 *d^3[/tex] ) = 42 Mpa = 42 N/mm²

Tensile stress ( Τ ) = 56 Mpa = 56 N/mm²

lets assume Diameter of shaft =   d

First step ; calculate the value of the torque transmitted

[tex]T = \frac{P *60}{2\pi N}[/tex]  = [tex]\frac{20000 * 60 }{2*\pi *200}[/tex] = 955 N-m  = 955 * 10³ N-mm

Step 2 ; determine the max bending moment

M = [tex]\frac{W*L}{4}[/tex]  = [tex]\frac{900 *3}{4}[/tex] = 675 * 10³ N-mm

next ; Determine the equivalent twisting moment ( T )

[tex]T = \sqrt{M^2 + T^2}[/tex] = [tex]\sqrt{(675 *10^3 )^2 + ( 955*10^3))^2}[/tex]  = 1169 * 10³ N-mm

Final step ; Determine the diameter of the shaft

note ; equivalent twisting moment can be expressed as

T = [tex]\frac{\pi }{16} * 42 * d^3[/tex]  

∴  1169 * 10³ = 0.1963 * 42 * d³

        d³ = ( 1168 * 10³ ) / ( 0.1963 * 42 )

         d  = [tex]\sqrt[3]{141668.486}[/tex]   = 52.13 mm

Given that the maximum tensile or compressive stress is ≤ 56 Mpa

Hence we can conclude that The max diameter of the shaft will be ; ≥ 52.13 mm

Learn more : https://brainly.com/question/13240407

Q&A Education