Respuesta :

Answer:

The Area of Δ TOP  is 43.55 units².

Step-by-step explanation:

Given:

P  ≡ ( x₁ ,y₁ ) ≡ ( -5 , -7)

T  ≡ ( x₂ ,y₂ ) ≡ ( 1 , 8)

O ≡ ( x₃ ,y₃ ) ≡ ( 6 , 6)

To Find :

Area of Δ TOP = ?

Solution :

We have

[tex]\textrm{Area of Triangle TOP} = \frac{1}{2}\times Base\times Height\\\textrm{Area of Triangle TOP} = \frac{1}{2}\times OT\times PT[/tex]

Now Distance formula we have

[tex]l(PT) = \sqrt{((x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} )}[/tex]

[tex]l(OT) = \sqrt{((x_{3}-x_{2})^{2}+(y_{3}-y_{2})^{2} )}[/tex]

Substituting the  given values we get

[tex]l(PT) = \sqrt{((1--5)^{2}+(8--7)^{2} )}\\l(PT) = \sqrt{((1+5)^{2}+(8+7)^{2} )}\\l(PT) = \sqrt{((6)^{2}+(15)^{2} )}\\l(PT) = \sqrt{261}\\l(PT) = 16.16\ units[/tex]

And

[tex]l(OT) = \sqrt{((x_{3}-x_{2})^{2}+(y_{3}-y_{2})^{2} )}\\l(OT) = \sqrt{((6-1)^{2}+(6-8)^{2} )}\\l(OT) = \sqrt{((5)^{2}+(-2)^{2} )}\\l(OT) = \sqrt{29}\\l(OT) = 5.39\ units[/tex]

Now substituting OT and PT in area formula we get

[tex]\textrm{Area of Triangle TOP} = \frac{1}{2}\times 5.39\times 16.16\\\textrm{Area of Triangle TOP} = 43.55\ units^{2}[/tex]

Therefore, Area of Δ TOP  is 43.55 units².

Q&A Education