Answer:
We will use ideal gas law to find the temperature inside the balloon.
The temperature inside the balloon is 0.002564 K.
Explanation:
We will use ideal gas law , given as :
PV = nRT
where,
P = Pressure of gas
V = Volume of gas
n = number of moles of gas
R = Gas constant = 0.0821 L.atm/mol.K
T = Temperature of gas
So,using ideal gas equation to find the temperature inside the balloon:
PV = nRT
where,
P = 20 mmHg =[tex]\frac{20}{760}atm=[/tex]
V = 10 mL = 0.010 L
n = = [tex]\frac{5 g}{4 g/mol}=1.25 mol[/tex]
R = 0.0821 L.atm/mol.K
T = Temperature of helium gas = ?
Putting values in above equation, we get:
[tex](\frac{20 }{760}atm)\times 0.010 L=1.25 \times (0.0821L.atm/mol.K)\times T[/tex]
[tex]T=\frac{\frac{20 }{760}atm)\times 0.010 L}{1.25 mol\times (0.0821L.atm/mol.K)}=0.002564 K[/tex]
The temperature inside the balloon is 0.002564 K.